Pratt School of Engineering
 HOME > pratt    Search Help Login 

Research Interests for Leslie M. Collins

Research Interests: Statistical Signal Processing, Remote Sensing, Auditory Prostheses

This laboratory’s research is in the area of physics-based statistical signal processing algorithms, and we are actively engaged in two general application areas: (1) Investigating human auditory perception and developing remediation strategies for the hearing impaired; (2) developing sensor-based algorithms for the detection of hazardous buried objects, such as unexploded ordnance (UXO) and landmines. Our research methodology is distinguished in two fundamental ways. First, we place an emphasis on incorporating the physics or phenomenology that governs the specific application directly into the signal processing framework, and we consider both experimental and theoretical issues. Second, we maintain an interactive collaboration with the end-user community that provides necessary feedback to the development process and validates the real-world utility of our research efforts. Our work in these application areas has improved quality of life and safety of life as a result of the development of novel signal processing algorithms.

Keywords:
statistical signal processing, remote sensing, landmines, unexploded ordnance, auditory prostheses, cochlear implants
Current projects:
• Development of novel advanced data processing techniques for fielded and prototype UXO and landmine sensors.
• Multi-modal sensor fusion for subsurface sensing.
• Sensor management for efficient sensor deployment to decrease time to decision.
• Optimization of phenomenological electromagnetic induction model inversions for UXO detection.
• Statistical modeling of ground-penetrating radar signatures for landmine detection.
• Non-destructive fill material identification using gamma-ray spectroscopy.
• Object classification through ultrasonic measurements and model fitting.
• Classification of ultrasonic measurements of chemical signatures.
• Interactive computational auditory scene analysis for acoustic event detection and classification.
• EEG signal analysis to facilitate communication via brain-computer interface (BCI).
• Improvement of speech recognition and music perception for cochlear implant users through psychophysics and algorithm development.
Areas of Interest:

statistical signal processing
remote sensing
auditory prostheses

Recent Publications
  1. J. S. Stohl and C. S. Throckmorton and L. M. Collins, Investigating the effects of stimulus duration and context on pitch perception by cochlear implant users, Journal Of The Acoustical Society Of America, vol. 126 no. 1 (July, 2009), pp. 318 -- 326, ISSN 0001-4966 [abs]
  2. S. L. Tantum and Q. Zhu and P. A. Torrione and L. M. Collins, Modeling position error probability density functions for statistical inversions using a Goff-Jordan rough surface model, Stochastic Environmental Research And Risk Assessment, vol. 23 no. 2 (February, 2009), pp. 155 -- 167, ISSN 1436-3240 [abs]
  3. K. D. Morton and P. A. Torrione and C. S. Throckmorton and L. M. Collins, Mandarin Chinese tone identification in cochlear implants: Predictions from acoustic models, Hearing Research, vol. 244 no. 1-2 (October, 2008), pp. 66 -- 76, ISSN 0378-5955 [abs]
  4. J. S. Stohl and C. S. Throckmorton and L. M. Collins, Assessing the pitch structure associated with multiple rates and places for cochlear implant users, Journal Of The Acoustical Society Of America, vol. 123 no. 2 (February, 2008), pp. 1043 -- 1053, ISSN 0001-4966 [abs]
  5. J. J. Remus and L. M. Collins, Comparison of adaptive psychometric procedures motivated by the Theory of Optimal Experiments: Simulated and experimental results, Journal Of The Acoustical Society Of America, vol. 123 no. 1 (January, 2008), pp. 315 -- 326, ISSN 0001-4966 [abs]

Duke University * Pratt * Deans * Staff * Faculty * Reload * Login
x