Academic Advising Center Advisors Database
Academic Advising Center
Arts & Sciences
Duke University

 HOME > Arts & Sciences > advising > Advisors    Search Help Login 

Publications [#258533] of Jerome P. Reiter

Papers Published

  1. Burgette, LF; Reiter, JP, Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Data., Bayesian analysis, vol. 8 no. 2 (June, 2013), pp. 453-478, ISSN 1936-0975 [doi]
    (last updated on 2026/01/20)

    Abstract:
    Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.


Duke University * Arts & Sciences * Advisors * Peer advisors * Staff * Reload * Login
x