Academic Advising Center Advisors Database
Academic Advising Center
Arts & Sciences
Duke University

 HOME > Arts & Sciences > advising > Advisors    Search Help Login 

Publications [#381226] of Seog Oh

Papers Published

  1. Lam, ATL; Ho, V; Vassilev, S; Reuveny, S; Oh, SKW, An allied reprogramming, selection, expansion and differentiation platform for creating hiPSC on microcarriers., Cell proliferation, vol. 55 no. 8 (August, 2022), pp. e13256 [doi]
    (last updated on 2026/01/20)

    Abstract:

    Objectives

    Induced pluripotent stem cells (iPSCs) generated by monolayer cultures is plagued by low efficiencies, high levels of manipulation and operator unpredictability. We have developed a platform, reprogramming, expansion, and differentiation on Microcarriers, to solve these challenges.

    Materials and methods

    Five sources of human somatic cells were reprogrammed, selected, expanded and differentiated in microcarriers suspension cultures.

    Results

    Improvement of transduction efficiencies up to 2 times was observed. Accelerated reprogramming in microcarrier cultures was 7 days faster than monolayer, providing between 30 and 50-fold more clones to choose from fibroblasts, peripheral blood mononuclear cells, T cells and CD34+ stem cells. This was observed to be due to an earlier induction of genes (β-catenin, E-cadherin and EpCAM) on day 4 versus monolayer cultures which occurred on days 14 or later. Following that, faster induction and earlier stabilization of pluripotency genes occurred during the maturation phase of reprogramming. Integrated expansion without trypsinization and efficient differentiation, without embryoid bodies formation, to the three germ-layers, cardiomyocytes and haematopoietic stem cells were further demonstrated.

    Conclusions

    Our method can solve the inherent problems of conventional monolayer cultures. It is highly efficient, cell dissociation free, can be operated with lower labor, and allows testing of differentiation efficiency without trypsinization and generation of embryoid bodies. It is also amenable to automation for processing more samples in a small footprint, alleviating many challenges of manual monolayer selection.

Duke University * Arts & Sciences * Advisors * Peer advisors * Staff * Reload * Login
x