Math @ Duke
|
Publications [#368929] of Amanda Randles
Papers Published
- Pepona, M; Gounley, J; Randles, A, Effect of constitutive law on the erythrocyte membrane response to large strains.,
Computers & mathematics with applications (Oxford, England : 1987), vol. 132
(February, 2023),
pp. 145-160 [doi]
(last updated on 2024/11/20)
Abstract: Three constitutive laws, that is the Skalak, neo-Hookean and Yeoh laws, commonly employed for describing the erythrocyte membrane mechanics are theoretically analyzed and numerically investigated to assess their accuracy for capturing erythrocyte deformation characteristics and morphology. Particular emphasis is given to the nonlinear deformation regime, where it is known that the discrepancies between constitutive laws are most prominent. Hence, the experiments of optical tweezers and micropipette aspiration are considered here, for which relationships between the individual shear elastic moduli of the constitutive laws can also be established through analysis of the tension-deformation relationship. All constitutive laws were found to adequately predict the axial and transverse deformations of a red blood cell subjected to stretching with optical tweezers for a constant shear elastic modulus value. As opposed to Skalak law, the neo-Hookean and Yeoh laws replicated the erythrocyte membrane folding, that has been experimentally observed, with the trade-off of sustaining significant area variations. For the micropipette aspiration, the suction pressure-aspiration length relationship could be excellently predicted for a fixed shear elastic modulus value only when Yeoh law was considered. Importantly, the neo-Hookean and Yeoh laws reproduced the membrane wrinkling at suction pressures close to those experimentally measured. None of the constitutive laws suffered from membrane area compressibility in the micropipette aspiration case.
|
|
dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
| |
Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320
|
|