Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Amanda Randles, Alfred Winborne and Victoria Stover Mordecai Assistant Professor of Biomedical Sciences and Assistant Professor of Mathematics and Computer Science and Member of Duke Cancer Institute

Amanda Randles

My research in biomedical simulation and high performance computing focuses on the development of new computational tools that we use to provide insight into the localization and development of human diseases ranging from atherosclerosis to cancer. 

Contact Info:
Office Location:  301 Gross Hall, 140 Science Dr., Durham, NC 27708
Office Phone:  (919) 660-5425
Email Address: send me a message

Teaching (Fall 2018):

  • BME 590L.001, SPECIAL TOPICS WITH LAB Synopsis
    Gross Hall 324, MW 01:25 PM-02:40 PM
  • BME 590L.01L, SPECIAL TOPICS WITH LAB Synopsis
    Gross Hall 324, Th 04:40 PM-06:40 PM
Education:

Ph.D. Harvard University2013
Keywords:

Aortic Coarctation • Atherosclerosis • Biomechanical Phenomena • Biomechanics • Biophysics • Cancer • Cancer cells • Cardiovascular Diseases • Computational Biology • Computational fluid dynamics • Computer Simulation • Fluid mechanics • Hemodynamics • High performance computing • Lattice Boltzmann methods • Metastasis • Multiscale modeling • Parallel algorithms • Parallel computers

Recent Publications   (More Publications)

  1. Hegele, LA; Scagliarini, A; Sbragaglia, M; Mattila, KK; Philippi, PC; Puleri, DF; Gounley, J; Randles, A, High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method, Physical Review. E, vol. 98 no. 4 (October, 2018) [doi]  [abs]
  2. Herschlag, G; Lee, S; Vetter, JS; Randles, A, GPU data access on complex geometries for D3Q19 lattice boltzmann method, Proceedings 2018 Ieee 32nd International Parallel and Distributed Processing Symposium, Ipdps 2018 (August, 2018), pp. 825-834, ISBN 9781538643686 [doi]  [abs]
  3. Rafat, M; Stone, HA; Auguste, DT; Dabagh, M; Randles, A; Heller, M; Rabinov, JD, Impact of diversity of morphological characteristics and Reynolds number on local hemodynamics in basilar aneurysms, Aiche Journal, vol. 64 no. 7 (July, 2018), pp. 2792-2802 [doi]  [abs]
  4. Gounley, J; Vardhan, M; Randles, A, A framework for comparing vascular hemodynamics at different points in time, Computer Physics Communications (June, 2018) [doi]
  5. Randles, A; Frakes, DH; Leopold, JA, Computational Fluid Dynamics and Additive Manufacturing to Diagnose and Treat Cardiovascular Disease., Trends in Biotechnology, vol. 35 no. 11 (November, 2017), pp. 1049-1061 [doi]  [abs]
Recent Grant Support

  • University Training Program in Biomolecular and Tissue Engineering, National Institutes of Health, 1994/07-2022/06.      
  • ORNL Joint Faculty Appointment for Amanda Randles, UT-Battelle, LLC, 4000152260, 2017/02-2019/09.      
  • Interactive virtual reality cardiovascular visualizations: User study for clinicians - Harvey Shi award, Sigma Xi, 2018/06-2019/05.      
  • Student Support: IEEE Cluster 2018 Conference, National Science Foundation, OAC-1814225, 2018/05-2019/04.      
  • Hartwell Fellowship, Hartwell Foundation, 2017/10-2018/09.      
  • Using GPU-Accelerated Computational Fluid Dynamics to Study In-stent Restenosis, Oak Ridge Associated Universities, 2016/06-2017/05.      

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320