Department of Mathematics
 Search | Help | Login

Math @ Duke





.......................

.......................


Publications [#363205] of Amanda Randles

Papers Published

  1. Puleri, DF; Randles, A, The role of adhesive receptor patterns on cell transport in complex microvessels., Biomechanics and modeling in mechanobiology, vol. 21 no. 4 (August, 2022), pp. 1079-1098 [doi]
    (last updated on 2025/12/31)

    Abstract:
    Cell transport is governed by the interaction of fluid dynamic forces and biochemical factors such as adhesion receptor expression and concentration. Although the effect of endothelial receptor density is well understood, it is not clear how the spacing and local spatial distribution of receptors affect cell adhesion in three-dimensional microvessels. To elucidate the effect of vessel shape on cell trajectory and the arrangement of endothelial receptors on cell adhesion, we employed a three-dimensional deformable cell model that incorporates microscale interactions between the cell and the endothelium. Computational cellular adhesion models are systematically altered to assess the influence of receptor spacing. We demonstrate that the patterns of receptors on the vessel walls are a key factor guiding cell movement. In straight microvessels, we show a relationship between cell velocity and the spatial distribution of adhesive endothelial receptors, with larger receptor patches producing lower translational velocities. The joint effect of the complex vessel topology seen in microvessel shapes such as curved and bifurcated vessels when compared to straight tubes is explored with results which showed the spatial distribution of receptors affecting cell trajectory. Our findings here represent demonstration of the previously undescribed relationship between receptor pattern and geometry that guides cellular movement in complex microenvironments.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320


x