Department of Mathematics
 Search | Help | Login | printable version

Math @ Duke





.......................

.......................


Publications of David G. Schaeffer    :chronological  alphabetical  combined  bibtex listing:

Books

  1. Two phase flows and waves, edited by Joseph, Daniel D. and Schaeffer, David G., pp. xii+164, 1990, Springer-Verlag, New York [MR91e:76008]
  2. Golubitsky, Martin and Stewart, Ian and Schaeffer, David G., Singularities and groups in bifurcation theory. Vol. II, pp. xvi+533, 1988, Springer-Verlag, New York [MR89m:58038]
  3. Golubitsky, Martin and Schaeffer, David G., Singularities and groups in bifurcation theory. Vol. I, pp. xvii+463, 1985, Springer-Verlag, New York [MR86e:58014]

Papers Published

  1. Gonzales, K; Kayikci, O; Schaeffer, DG; Magwene, P, Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway, BMC Systems Biology, vol. 7 (Winter, 2010), pp. 40, BioMed Central [doi]  [abs]
  2. Farjoun, Y; Schaeffer, DG, The hanging thin rod: a singularly perturbed eigenvalue problem, SIAM Sppl. Math. (July, 2010)
  3. Dai, S; Schaeffer, DG, Chaos in a one-dimensional model for cardiac dynamics, Chaos, vol. 20 no. 2 (June, 2010)
  4. Dai, S; Schaeffer, DG, Bifurcations in a modulation equation for alternans in a cardiac fiber, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 44 no. 6 (Winter, 2010), pp. 1225-1238, E D P SCIENCES, ISSN 0764-583X [Gateway.cgi], [doi]  [abs]
  5. Schaeffer, DG; Beck, M; Jones, C; Wechselberger, M, Electrical waves in a one-dimensional model of cardiac tissue, SIAM Applied Dynamical Systems, vol. 7 no. 4 (December, 2008), pp. 1558-1581, Society for Industrial & Applied Mathematics (SIAM) [doi]  [abs]
  6. Schaeffer, DG; Iverson, RM, Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback, SIAM Journal on Applied Mathematics, vol. 69 no. 3 (December, 2008), pp. 769-786, Society for Industrial & Applied Mathematics (SIAM), ISSN 0036-1399 [Gateway.cgi], [doi]  [abs]
  7. Dai, S; Schaeffer, DG, Spectrum of a linearized amplitude equation for alternans in a cardiac fiber, SIAM Journal on Applied Mathematics, vol. 69 no. 3 (December, 2008), pp. 704-719, Society for Industrial & Applied Mathematics (SIAM), ISSN 0036-1399 [Gateway.cgi], [doi]  [abs]
  8. Schaeffer, DG; Ying, W; Zhao, X, Asymptotic approximation of an ionic model for cardiac restitution., Nonlinear dynamics, vol. 51 no. 1-2 (January, 2008), pp. 189-198, ISSN 0924-090X [19122809], [doi]  [abs]
  9. Schaeffer, DG; Catlla, A; Witelski, T; Monson, E; Lin, A, On spiking models of synaptic activity and impulsive differential equations, SIAM Review, vol. 50 no. 553--569 (2008)
  10. Schaeffer, DG; Cain, J, Shortening of action potential duraction near an insulating boundary, Math Medicine and Biology, vol. 25 no. 21--36 (2008)
  11. Zhao, X; Schaeffer, DG, Alternate Pacing of Border-Collision Period-Doubling Bifurcations., Nonlinear dynamics, vol. 50 no. 3 (November, 2007), pp. 733-742, ISSN 0924-090X [19132134], [doi]  [abs]
  12. Berger, CM; Zhao, X; Schaeffer, DG; Dobrovolny, HM; Krassowska, W; Gauthier, DJ, Period-doubling bifurcation to alternans in paced cardiac tissue: crossover from smooth to border-collision characteristics., Physical review letters, vol. 99 no. 5 (August, 2007), pp. 058101, ISSN 0031-9007 [17930795], [doi]  [abs]
  13. Zhao, X; Schaeffer, DG; Berger, CM; Gauthier, DJ, Small-Signal Amplification of Period-Doubling Bifurcations in Smooth Iterated Maps., Nonlinear dynamics, vol. 48 no. 4 (June, 2007), pp. 381-389, ISSN 0924-090X [19112525], [doi]  [abs]
  14. Schaeffer, DG; Cain, JW; Gauthier, DJ; Kalb, SS; Oliver, RA; Tolkacheva, EG; Ying, W; Krassowska, W, An ionically based mapping model with memory for cardiac restitution., Bulletin of mathematical biology, vol. 69 no. 2 (February, 2007), pp. 459-482, ISSN 0092-8240 [17237915], [doi]  [abs]
  15. Schaeffer, DG; Shearer, M; Witelski, T, Boundary-value problems for hyperbolic partial differential equations related to steady granular flow, Math. and Mech. of Solids, vol. 12 (2007), pp. 665-699
  16. Schaeffer, DG; Matthews, M; Gremaud, P, On the computation of steady hopper flows III: Comparison of von Mises and Matsuoka-Nakai materials", J Comp. Phy., vol. 219 (2006), pp. 443-454
  17. Schaeffer, DG; Tighe, B; Socolar, J; Michener, G; Huber, M, Force distribution in granular media, PRE, vol. 72 (2005), pp. 031306
  18. Schaeffer, DG; Kalb, S; Tolkacheva, E; Gauthier, D; Krassowska, W, Features of the restitution portrait for mapping models with an arbitrary amount of memory, Chaos, vol. 15 (2005), pp. 023701
  19. Gremaud, PA; Matthews, JV; Schaeffer, DG, Secondary circulation in granular flow through nonaxisymmetric hoppers, SIAM Journal on Applied Mathematics, vol. 64 no. 2 (June, 2004), pp. 583-600, ISSN 0036-1399 [Gateway.cgi], [doi]  [abs]
  20. Schaeffer, DG; Matthews, JV, A steady-state, hyperbolic free boundary problem for a granular-flow model, SIAM J. Math Analysis, vol. 36 (2004), pp. 256-271
  21. Schaeffer, DG; Cain, J; Tolkacheva, E; Gauthier, D, Rate-dependent waveback velocity of cardiac action potentials in a done-dimensional cable, Phys Rev E, vol. 70 (2004), pp. 061906-?
  22. Mitchell, CC; Schaeffer, DG, A two-current model for the dynamics of cardiac membrane., Bulletin of mathematical biology, vol. 65 no. 5 (September, 2003), pp. 767-793, ISSN 0092-8240 [12909250], [doi]  [abs]
  23. Tolkacheva, EG; Schaeffer, DG; Gauthier, DJ; Krassowska, W, Condition for alternans and stability of the 1:1 response pattern in a "memory" model of paced cardiac dynamics., Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 67 no. 3 Pt 1 (March, 2003), pp. 031904, ISSN 1539-3755 [12689098], [doi]  [abs]
  24. D.G. Schaeffer, E. Tolkacheva, D. Gauthier, W. Krassowska, Condition for alternans and stability of the 1:1 response pattern in a memory model of paced cardiac dynamics, Phys Rev E, vol. 67 (2003), pp. 031904
  25. Schaeffer, DG; Shearer, M; Witelski, T, One-dimensional solutions of an elastoplasticity model of granular material, Math. Models and Methods in Appl. Sciences, vol. 13 (2003), pp. 1629-1671
  26. Schaeffer, DG, Review of W. Cheney's "Analysis for applied mathematics", Amer. Math Monthly, vol. 110 (2003), pp. 550
  27. Tolkacheva, EG; Schaeffer, DG; Gauthier, DJ; Mitchell, CC, Analysis of the Fenton-Karma model through an approximation by a one-dimensional map., Chaos (Woodbury, N.Y.), vol. 12 no. 4 (December, 2002), pp. 1034-1042 [12779627], [doi]  [abs]
  28. Socolar, JES; Schaeffer, DG; Claudin, P, Directed force chain networks and stress response in static granular materials., The European physical journal. E, Soft matter, vol. 7 no. 4 (April, 2002), pp. 353-370 [doi]  [abs]
  29. Schaeffer, DG; Tolkacheva, E; Mitchell, C, Analysis of the Fenton-Karma model through a one-dimensional map, Chaos, vol. 12 (2002), pp. 1034-1042
  30. Gremaud, P; Schaeffer, DG; Shearer, M, Granular Flow Past a Binsert, Report to Jenike & Johanson, Inc. (January, 1997)
  31. Witelski, Thomas P. and Schaeffer, David G. and Shearer, Michael, A discrete model for an ill-posed nonlinear parabolic PDE, Phys. D, vol. 160, no. 3-4, pp. 189--221, 2001 [MR1872040]
  32. G. Metcalfe, L. Kondic, D. Schaeffer, S. Tennakoon, and R. Behringer, Granular friction and the fluid-solid transition for shaken granular materials, Phys. Rev. E 65 (2002)
  33. Hayes, Brian T. and Schaeffer, David G., Stress-controlled shear waves in a saturated granular medium, European J. Appl. Math., vol. 11, no. 1, pp. 81--94, 2000 [MR2000k:74037]
  34. David G Schaeffer, M. Sexton, J. Socolar, Force Distribution in a Scalar Model for Non-Cohesive Granular Material, Phys. Rev. Lett. E 60 (1999), 1999-2008
  35. Gremaud, Pierre Alain and Schaeffer, David G. and Shearer, Michael, Numerical determination of flow corrective inserts for granular materials in conical hoppers, Internat. J. Non-Linear Mech., vol. 35, no. 5, pp. 869--882, 2000 [MR2001a:76129]
  36. Hayes, Brian T. and Schaeffer, David G., Plane shear waves under a periodic boundary disturbance in a saturated granular medium, Phys. D, vol. 121, no. 1-2, pp. 193--212, 1998 [MR99g:73052]
  37. Howle, Laurens and Schaeffer, David G. and Shearer, Michael and Zhong, Pei, Lithotripsy: the treatment of kidney stones with shock waves, SIAM Rev., vol. 40, no. 2, pp. 356--371 (electronic), 1998 [MR99d:92009]
  38. David G Schaeffer, M. Shearer, A Simple Model for Stress Fluctuations in Plasticity, with Application to Granular Materials, SIAM J. Appl. Math. 58(1998), 1791-1807.
  39. G. Tardos, M.I. Khan, David G Schaeffer, Forces On a Slowly Rotating, Rough Cylinder in a Couette Device Containing a Dry, Frictional Powder, Physics of Fluids 10(1998), 335-341.
  40. Schaeffer, David G. and Shearer, Michael, The influence of material non-uniformity preceding shear-band formation in a model for granular flow, European J. Appl. Math., vol. 8, no. 5, pp. 457--483, 1997 [MR98g:73016]
  41. M. K. Gordon, David G Schaeffer, M. Shearer, Plane Shear Waves in a Fully Saturated Granular Medium with Velocity-and Stress-Controlled Boundary Conditions, Int. J. Nonlinear Mechancis 32(1997), 489-503.
  42. David G Schaeffer, M. Shearer, Models of Stress Fluctuations in Granular Materials, Powders and Grains, R.P. Behringer and J. Jenkins (eds.), Balkema, 1997.
  43. Shearer, Michael and Schaeffer, David G., Riemann problems for $5\times 5$ systems of fully non-linear equations related to hypoplasticity, Math. Methods Appl. Sci., vol. 19, no. 18, pp. 1433--1444, 1996 [MR97m:73028]
  44. Schaeffer, David G., A survey of granular flow, Hyperbolic problems: theory, numerics, applications (Stony Brook, NY, 1994), pp. 63--80, 1996, World Sci. Publishing, River Edge, NJ [MR1446015]
  45. David G Schaeffer, Memoirs From a Small-Scale Course On Industrial Math, Notices AMS, 43(1996), 550-557.
  46. Shearer, Michael and Schaeffer, David G., A class of fully nonlinear $2\times 2$ systems of partial differential equations, Comm. Partial Differential Equations, vol. 20, no. 7-8, pp. 1105--1131, 1995 [MR96b:35133]
  47. Shearer, Michael and Schaeffer, David G., Fully nonlinear hyperbolic systems of partial differential equations related to plasticity, Comm. Partial Differential Equations, vol. 20, no. 7-8, pp. 1133--1153, 1995 [MR96b:35134]
  48. Garaizar, F. Xabier and Schaeffer, David G., Numerical computations for shear bands in an antiplane shear model, J. Mech. Phys. Solids, vol. 42, no. 1, pp. 21--50, 1994 [MR94j:73029]
  49. Gardner, Carl L. and Schaeffer, David G., Numerical simulation of uniaxial compression of a granular material with wall friction, SIAM J. Appl. Math., vol. 54, no. 6, pp. 1676--1692, 1994 [MR95g:76010]
  50. Shearer, Michael and Schaeffer, David G., Unloading near a shear band in granular material, Quart. Appl. Math., vol. 52, no. 3, pp. 579--600, 1994 [MR95m:73030]
  51. F.X. Garzizar, David G Schaeffer, M. Shearer, J. Trangenstein, Formation and Development of Shear Bands in Granular Material, Trans. of 11th Army Conf. on Appl. Math. & Computing.
  52. Shearer, Michael and Schaeffer, David G., The initial value problem for a system modelling unidirectional longitudinal elastic-plastic waves, SIAM J. Math. Anal., vol. 24, no. 5, pp. 1111--1144, 1993 [MR95f:73038]
  53. Schaeffer, David G. and Shearer, Michael, Unloading near a shear band: a free boundary problem for the wave equation, Comm. Partial Differential Equations, vol. 18, no. 7-8, pp. 1271--1298, 1993 [MR94i:35203]
  54. Schaeffer, David G. and Schecter, Stephen and Shearer, Michael, Non-strictly hyperbolic conservation laws with a parabolic line, J. Differential Equations, vol. 103, no. 1, pp. 94--126, 1993 [MR94d:35102]
  55. Schaeffer, David G., A mathematical model for localization in granular flow, Proc. Roy. Soc. London Ser. A, vol. 436, no. 1897, pp. 217--250, 1992 [MR93g:73061]
  56. Schaeffer, David G. and Shearer, Michael, Scale-invariant initial value problems in one-dimensional dynamic elastoplasticity, with consequences for multidimensional nonassociative plasticity, European J. Appl. Math., vol. 3, no. 3, pp. 225--254, 1992 [MR93g:73057]
  57. An, Lian Jun and Schaeffer, David G., The flutter instability in granular flow, J. Mech. Phys. Solids, vol. 40, no. 3, pp. 683--698, 1992 [MR93c:73053]
  58. Wang, Feng and Gardner, Carl L. and Schaeffer, David G., Steady-state computations of granular flow in an axisymmetric hopper, SIAM J. Appl. Math., vol. 52, no. 4, pp. 1076--1088, 1992 [MR93c:73040]
  59. Schaeffer, David G. and Shearer, Michael, Loss of hyperbolicity in yield vertex plasticity models under nonproportional loading, Nonlinear evolution equations that change type, pp. 192--217, 1990, Springer, New York [MR92f:73022]
  60. Schaeffer, David G., Mathematical issues in the continuum formulation of slow granular flow, Two phase flows and waves (Minneapolis, MN, 1989), pp. 118--129, 1990, Springer, New York [MR91f:73014]
  61. Schaeffer, David G., Instability and ill-posedness in the deformation of granular materials, Internat. J. Numer. Anal. Methods Geomech., vol. 14, no. 4, pp. 253--278, 1990 [MR91e:73071]
  62. Schaeffer, David G. and Shearer, Michael and Pitman, E. Bruce, Instability in critical state theories of granular flow, SIAM J. Appl. Math., vol. 50, no. 1, pp. 33--47, 1990 [MR90k:73044]
  63. Shearer, Michael and Schaeffer, David G., The quasidynamic approximation in critical state plasticity, Arch. Rational Mech. Anal., vol. 108, no. 3, pp. 267--280, 1989 [MR91d:73031]
  64. Pitman, E. Bruce and Schaeffer, David G., Instability and ill-posedness in granular flow, Current progress in hyberbolic systems: Riemann problems and computations (Brunswick, ME, 1988), pp. 241--250, 1989, Amer. Math. Soc., Providence, RI [MR90k:73037]
  65. Schaeffer, David G. and Pitman, E. Bruce, Ill-posedness in three-dimensional plastic flow, Comm. Pure Appl. Math., vol. 41, no. 7, pp. 879--890, 1988 [MR89m:73018]
  66. Beale, J. Thomas and Schaeffer, David G., Nonlinear behavior of model equations which are linearly ill-posed, Comm. Partial Differential Equations, vol. 13, no. 4, pp. 423--467, 1988 [MR89h:35329]
  67. Schaeffer, David G. and Shearer, Michael, Riemann problems for nonstrictly hyperbolic $2\times 2$ systems of conservation laws, Trans. Amer. Math. Soc., vol. 304, no. 1, pp. 267--306, 1987 [MR88m:35101]
  68. Pitman, E. Bruce and Schaeffer, David G., Stability of time dependent compressible granular flow in two dimensions, Comm. Pure Appl. Math., vol. 40, no. 4, pp. 421--447, 1987 [MR88i:35170]
  69. Schaeffer, David G., Instability in the evolution equations describing incompressible granular flow, J. Differential Equations, vol. 66, no. 1, pp. 19--50, 1987 [MR88i:35169]
  70. Shearer, M. and Schaeffer, D. G. and Marchesin, D. and Paes-Leme, P. L., Solution of the Riemann problem for a prototype $2\times 2$ system of nonstrictly hyperbolic conservation laws, Arch. Rational Mech. Anal., vol. 97, no. 4, pp. 299--320, 1987 [MR88a:35156]
  71. Schaeffer, David G. and Shearer, Michael, The classification of $2\times 2$ systems of nonstrictly hyperbolic conservation laws, with application to oil recovery, Comm. Pure Appl. Math., vol. 40, no. 2, pp. 141--178, 1987 [MR88a:35155]
  72. Shearer, Michael and Schaeffer, David G., Recent developments in nonstrictly hyperbolic conservation laws, Transactions of the fourth Army conference on applied mathematics and computing (Ithaca, N.Y., 1986), pp. 43--52, 1987, U.S. Army Res. Office, Research Triangle Park, NC [MR905075]
  73. Schaeffer, David G. and Shearer, Michael, Three phase flow in a porous medium and the classification of nonstrictly hyperbolic conservation laws, International workshop on applied differential equations (Beijing, 1985), pp. 154--162, 1986, World Sci. Publishing, Singapore [MR89c:35100]
  74. Shearer, Michael and Schaeffer, David G., Three-phase flow in a porous medium and the classification of non-strictly hyperbolic conservation laws, Transactions of the third Army conference on applied mathematics and computing (Atlanta, Ga., 1985), pp. 509--517, 1986, U.S. Army Res. Office, Research Triangle Park, NC [MR87j:76093]
  75. Schaeffer, David G., Instability in the flow of granular materials, Mathematics applied to fluid mechanics and stability (Troy, N.Y., 1985), pp. 274, 1986, SIAM, Philadelphia, PA [MR869642]
  76. Golubitsky, M. and Marsden, J. and Schaeffer, D., Bifurcation problems with hidden symmetries, Partial differential equations and dynamical systems, pp. 181--210, 1984, Pitman, Boston, MA [MR86a:58020]
  77. Holder, E. J. and Schaeffer, D., Boundary conditions and mode jumping in the von K\'arm\'an equations, SIAM J. Math. Anal., vol. 15, no. 3, pp. 446--458, 1984 [MR85m:73029]
  78. Schaeffer, David G., Topics in bifurcation theory, Systems of nonlinear partial differential equations (Oxford, 1982), pp. 219--262, 1983, Reidel, Dordrecht [MR85e:58107]
  79. Golubitsky, Martin and Schaeffer, David, A discussion of symmetry and symmetry breaking, Singularities, Part 1 (Arcata, Calif., 1981), pp. 499--515, 1983, Amer. Math. Soc., Providence, RI [MR85b:58018]
  80. Ball, J. M. and Schaeffer, D. G., Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions, Math. Proc. Cambridge Philos. Soc., vol. 94, no. 2, pp. 315--339, 1983 [MR84k:73033]
  81. Golubitsky, Martin and Schaeffer, David, Bifurcations with ${\rm O}(3)$\ symmetry including applications to the B\'enard problem, Comm. Pure Appl. Math., vol. 35, no. 1, pp. 81--111, 1982 [MR83b:58026]
  82. Schaeffer, David, General introduction to steady state bifurcation, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), pp. 13--47, 1981, Springer, Berlin [MR83j:58037]
  83. Golubitsky, Martin and Keyfitz, Barbara Lee and Schaeffer, David G., A singularity theory analysis of a thermal-chainbranching model for the explosion peninsula, Comm. Pure Appl. Math., vol. 34, no. 4, pp. 433--463, 1981 [MR82h:58010]
  84. Schaeffer, David G. and Golubitsky, Martin A., Bifurcation analysis near a double eigenvalue of a model chemical reaction, Arch. Rational Mech. Anal., vol. 75, no. 4, pp. 315--347, 1980/81 [MR83b:80010]
  85. Golubitsky, Martin and Keyfitz, Barbara L. and Schaeffer, David, A singularity theory approach to qualitative behavior of complex chemical systems, New approaches to nonlinear problems in dynamics (Proc. Conf., Pacific Grove, Calif., 1979), pp. 257--270, 1980, SIAM, Philadelphia, Pa. [MR82i:80011]
  86. Golubitsky, Martin and Schaeffer, David, A singularity theory approach to steady-state bifurcation theory, Nonlinear partial differential equations in engineering and applied science (Proc. Conf., Univ. Rhode Island, Kingston, R.I., 1979), pp. 229--254, 1980, Dekker, New York [MR82a:58018]
  87. Golubitsky, Martin and Schaeffer, David, A qualitative approach to steady-state bifurcation theory, New approaches to nonlinear problems in dynamics (Proc. Conf., Pacific Grove, Calif., 1979), pp. 43--51, 1980, SIAM, Philadelphia, Pa. [MR81k:58026]
  88. Schaeffer, David G., Qualitative analysis of a model for boundary effects in the Taylor problem, Math. Proc. Cambridge Philos. Soc., vol. 87, no. 2, pp. 307--337, 1980 [MR81c:35007]
  89. Schaeffer, David and Golubitsky, Martin, Boundary conditions and mode jumping in the buckling of a rectangular plate, Comm. Math. Phys., vol. 69, no. 3, pp. 209--236, 1979 [MR81k:35019]
  90. Golubitsky, M. and Schaeffer, D., An analysis of imperfect bifurcation, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977), pp. 127--133, 1979, New York Acad. Sci., New York [MR81c:58027]
  91. Golubitsky, M. and Schaeffer, D., A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., vol. 32, no. 1, pp. 21--98, 1979 [MR80j:58061]
  92. Golubitsky, M. and Schaeffer, D., Imperfect bifurcation in the presence of symmetry, Comm. Math. Phys., vol. 67, no. 3, pp. 205--232, 1979 [MR80j:58017]
  93. Schaeffer, David G., An application of the Nash-Moser theorem to a free boundary problem, Nonlinear partial differential equations and applications (Proc. Special Sem., Indiana Univ., Bloomington, Ind., 1976-1977), pp. 129--143, 1978, Springer, Berlin [MR80c:35067]
  94. Schaeffer, David G., Non-uniqueness in the equilibrium shape of a confined plasma, Comm. Partial Differential Equations, vol. 2, no. 6, pp. 587--600, 1977 [MR58:29210]
  95. Schaeffer, David G., Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), vol. 4, no. 1, pp. 133--144, 1977 [MR58:24345]
  96. Schaeffer, David G., One-sided estimates for the curvature of the free boundary in the obstacle problem, Advances in Math., vol. 24, no. 1, pp. 78--98, 1977 [MR56:6506]
  97. Guillemin, Victor and Schaeffer, David, On a certain class of Fuchsian partial differential equations, Duke Math. J., vol. 44, no. 1, pp. 157--199, 1977 [MR55:3504]
  98. Schaeffer, David G., Supersonic flow past a nearly straight wedge, Duke Math. J., vol. 43, no. 3, pp. 637--670, 1976 [MR54:1850]
  99. Schaeffer, David G., A new proof of the infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations, vol. 20, no. 1, pp. 266--269, 1976 [MR52:11325]
  100. Schaeffer, David G., Singularities and the obstacle problem, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 339--340, 1975, Amer. Math. Soc., Providence, R.I. [MR57:10227]
  101. Schaeffer, David G., On the existence of discrete frequencies of oscillation in a rotating fluid, Studies in Appl. Math., vol. 54, no. 3, pp. 269--274, 1975 [MR56:10385]
  102. Schaeffer, David G., An example of generic regularity for a non-linear elliptic equation, Arch. Rational Mech. Anal., vol. 57, pp. 134--141, 1975 [MR52:8649]
  103. Guillemin, V. and Schaeffer, D., Fourier integral operators from the Radon transform point of view, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 297--300, 1975, Amer. Math. Soc., Providence, R.I. [MR52:1420]
  104. Schaeffer, David G., A stability theorem for the obstacle problem, Advances in Math., vol. 17, no. 1, pp. 34--47, 1975 [MR52:994]
  105. Golubitsky, Martin and Schaeffer, David G., Stability of shock waves for a single conservation law, Advances in Math., vol. 16, pp. 65--71, 1975 [MR51:10889]
  106. Schaeffer, David G., The capacitor problem, Indiana Univ. Math. J., vol. 24, no. 12, pp. 1143--1167, 1974/75 [MR52:14607]
  107. Guillemin, V. and Schaeffer, D., Remarks on a paper of D. Ludwig, Bull. Amer. Math. Soc., vol. 79, pp. 382--385, 1973 [MR53:13800]
  108. Schaeffer, David G., An application of von Neumann algebras to finite difference equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 183--194, 1973, Amer. Math. Soc., Providence, R.I. [MR49:838]
  109. Schaeffer, David G., A regularity theorem for conservation laws, Advances in Math., vol. 11, pp. 368--386, 1973 [MR48:4523]
  110. Schaeffer, David G., An index theorem for systems of difference operators on a half space, Inst. Hautes \'Etudes Sci. Publ. Math., no. 42, pp. 121--127, 1973 [MR47:9341]
  111. Schaeffer, David G., Approximation of the Dirichlet problem on a half space, Acta Math., vol. 129, no. 3--4, pp. 281--295, 1972 [MR52:16058]
  112. Schaeffer, David G., An application of von Neumann algebras to finite difference equations, Ann. of Math. (2), vol. 95, pp. 117--129, 1972 [MR45:5563]
  113. Coburn, L. A. and Douglas, R. G. and Schaeffer, D. G. and Singer, I. M., $C\sp{\ast} $-algebras of operators on a half-space. II. Index theory, Inst. Hautes \'Etudes Sci. Publ. Math., no. 40, pp. 69--79, 1971 [MR50:10884]
  114. Schaeffer, David G., Wiener-Hopf factorization of the symbol of an elliptic difference operator, J. Functional Analysis, vol. 5, pp. 383--394, 1970 [MR41:7491]
  115. Schaeffer, David G., An extension of Hartogs' theorem for domains whose boundary is not smooth, Proc. Amer. Math. Soc., vol. 25, pp. 714--715, 1970 [MR41:5650]
  116. Schaeffer, David G., The Dirichlet problem with generalized functions as data, Ann. Mat. Pura Appl. (4), vol. 83, pp. 153--174, 1969 [MR41:7271]
  117. Schaeffer, David G., A note on the representation of a solution of an elliptic differential equation near an isolated singularity, Proc. amer. Math. Soc., vol. 23, pp. 450--454, 1969 [MR39:7262]

Papers Submitted

  1. S. Payne, B. Li, H. Song, D.G. Schaeffer, and L. You, Self-organized pattern formation by a pseudo-Turing mechanism (Winter, 2010)

Preprints

  1. D.G. Schaeffer, A. Catlla, T. Witelski, E. Monson, A. Lin, Annular patterns in reaction-diffusion systems and their implications for neural-glial interactions (2008)

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320