Fitzpatrick Institute for Photonics Fitzpatrick Institute for Photonics
Pratt School of Engineering
Duke University

 HOME > pratt > FIP    Search Help Login 

Publications [#264871] of Guillermo Sapiro

Papers Published

  1. Chen, B; Polatkan, G; Sapiro, G; Blei, D; Dunson, D; Carin, L, Deep Learning with Hierarchical Convolutional Factor Analysis., IEEE transactions on pattern analysis and machine intelligence (January, 2013) [23319498]
    (last updated on 2025/12/31)

    Abstract:
    Unsupervised multi-layered ("deep") models are considered for general data, with a particular focus on imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis, that explicitly exploit the convolutional nature of the expansion. In order to address large-scale and streaming data, an online version of VB is also developed. The number of basis functions or dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature.


Duke University * Pratt * Reload * Login
x