|
| Publications [#265128] of Guillermo Sapiro
Papers Published
- Chen, B; Polatkan, G; Sapiro, G; Dunson, DB; Carin, L, The hierarchical beta process for convolutional factor analysis and deep learning,
Proceedings of the 28th International Conference on Machine Learning Icml 2011
(October, 2011),
pp. 361-368
(last updated on 2025/12/31)
Abstract: A convolutional factor-analysis model is developed, with the number of filters (factors) inferred via the beta process (BP) and hierarchical BP, for single-task and multi-task learning, respectively. The computation of the model parameters is implemented within a Bayesian setting, employing Gibbs sampling; we explicitly exploit the convolutional nature of the expansion to accelerate computations. The model is used in a multi-level ("deep") analysis of general data, with specific results presented for image-processing data sets, e.g., classification. Copyright 2011 by the author(s)/owner(s).
|