Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications of Xiuyuan Cheng    :chronological  alphabetical  combined  bibtex listing:

Papers Published

  1. Cheng, X; Rachh, M; Steinerberger, S, On the diffusion geometry of graph Laplacians and applications, Applied and Computational Harmonic Analysis, vol. 46 no. 3 (May, 2019), pp. 674-688, Elsevier BV [doi]
  2. Cheng, X; Mishne, G; Steinerberger, S, The geometry of nodal sets and outlier detection, Journal of Number Theory, vol. 185 (April, 2018), pp. 48-64, Elsevier BV [doi]
  3. Yan, B; Sarkar, P; Cheng, X, Provable estimation of the number of blocks in block models, International Conference on Artificial Intelligence and Statistics, Aistats 2018 (January, 2018), pp. 1185-1194  [abs]
  4. Qiu, Q; Cheng, X; Calderbank, AR; Sapiro, G, DCFNet: Deep Neural Network with Decomposed Convolutional Filters., edited by Dy, JG; Krause, A, Icml, vol. 80 (2018), pp. 4195-4204, PMLR
  5. Lu, J; Lu, Y; Wang, X; Li, X; Linderman, GC; Wu, C; Cheng, X; Mu, L; Zhang, H; Liu, J; Su, M; Zhao, H; Spatz, ES; Spertus, JA; Masoudi, FA; Krumholz, HM; Jiang, L, Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project), Lancet (London, England), vol. 390 no. 10112 (December, 2017), pp. 2549-2558, Elsevier BV [doi]
  6. Pragier, G; Greenberg, I; Cheng, X; Shkolnisky, Y, A Graph Partitioning Approach to Simultaneous Angular Reconstitution, Ieee Transactions on Computational Imaging, vol. 2 no. 3 (September, 2016), pp. 323-334, Institute of Electrical and Electronics Engineers (IEEE) [doi]
  7. Zhang, T; Cheng, X; Singer, A, Marčenko–Pastur law for Tyler’s M-estimator, Journal of Multivariate Analysis, vol. 149 (July, 2016), pp. 114-123, Elsevier BV [doi]
  8. Cheng, X; Shaham, U; Dror, O; Jaffe, A; Nadler, B; Chang, J; Kluger, Y, A Deep Learning Approach to Unsupervised Ensemble Learning, Proceedings of the 33rd International Conference on Machine Learning, vol. 48 (June, 2016), pp. 30-39, PMLR
  9. Cheng, X; Chen, X; Mallat, S, Deep Haar scattering networks, Information and Inference, vol. 5 no. 2 (June, 2016), pp. 105-133, Oxford University Press (OUP) [doi]
  10. Boumal, N; Cheng, X, Concentration of the Kirchhoff index for Erdős–Rényi graphs, Systems & Control Letters, vol. 74 (December, 2014), pp. 74-80, Elsevier BV [doi]
  11. Chen, X; Cheng, X; Mallat, S, Unsupervised Deep Haar Scattering on Graphs., edited by Ghahramani, Z; Welling, M; Cortes, C; Lawrence, ND; Weinberger, KQ, Advances in Neural Information Processing Systems 27 (2014), pp. 1709-1717
  12. CHENG, XIUYUAN; SINGER, AMIT, The Spectrum of Random Inner-product Kernel Matrices, Random Matrices: Theory and Applications, vol. 02 no. 04 (October, 2013), pp. 1350010-1350010, World Scientific Pub Co Pte Lt [doi]
  13. E, W; Zhou, X; Cheng, X, Subcritical bifurcation in spatially extended systems, Nonlinearity, vol. 25 no. 3 (March, 2012), pp. 761-779, IOP Publishing [doi]
  14. Cheng, X; Lin, L; E, W; Zhang, P; Shi, A-C, Nucleation of Ordered Phases in Block Copolymers, Physical Review Letters, vol. 104 no. 14 (April, 2010), American Physical Society (APS) [doi]
  15. Lin, L; Cheng, X; E, W; Shi, A-C; Zhang, P, A numerical method for the study of nucleation of ordered phases, Journal of Computational Physics, vol. 229 no. 5 (March, 2010), pp. 1797-1809, Elsevier BV [doi]
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320